Compatible tight Riesz orders on groups of integer-valued functions
نویسندگان
چکیده
منابع مشابه
Integer-valued continuous functions
© Bulletin de la S. M. F., 1969, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملInteger-valued definable functions
We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a function f : [0,∞) → R is such that f(N) ⊆ Z, then either sup|x̄|≤r f(x̄) grows faster than exp(r), for some δ > 0,...
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملBest approximation by integer-valued functions
Given an integer function f , the problem is to find its best uniform approximation from a set K of integervalued bounded functions. Under certain conditions on K , the best extremal (maximal or minimal) approximation is identified. Furthermore, the operator mapping f to its extremal best approximation is shown to be Lipschitzian with some constant C or optimal Lipschitzian having the smallest ...
متن کاملA Riesz Representation Theorem for Cone-valued Functions
The theory of locally convex cones, as developed in [3], deals with ordered cones that are not necessarily embeddable in vector spaces. A topological structure is introduced using order theoretical concepts. We will review some of the main concepts and globally refer to [3] for details and proofs. An ordered cone is a set endowed with an addition and a scalar multiplication for nonnegative real...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1975
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700024035